Low-dimensional organization of angular momentum during walking on a narrow beam
نویسندگان
چکیده
منابع مشابه
Angular momentum in human walking.
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout...
متن کاملMuscle contributions to frontal plane angular momentum during walking.
The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has...
متن کاملAngular momentum of walking at different speeds.
Recently, researchers in robotics have used regulation of the angular momentum of body segments about the total body center of mass (CoM) to develop control strategies for bipedal gait. This work was spurred by reports finding that for a "large class" of human movement tasks, including standing, walking, and running the angular momentum is conserved about the CoM. However, there is little data ...
متن کاملAngular momentum of a strongly focused Gaussian beam
A circularly polarized paraxial Gaussian laser beam carries ±h̄ angular momentum per photon as spin, with zero orbital angular momentum. Focusing the beam with a rotationally symmetric lens cannot change this angular momentum flux, yet the focused beam must have spin |Sz | < h̄ per photon. The remainder of the original spin is converted to orbital angular momentum, manifesting itself as a longitu...
متن کاملOrbital Angular Momentum Density of a Hollow Vortex Gaussian Beam
Here the hollow vortex Gaussian beam is described by the exact solution of the Maxwell equations. By means of the method of the vectorial angular spectrum, analytical expressions of the electromagnetic fields of a hollow vortex Gaussian beam propagating in free space are derived. By using the electromagnetic fields of a hollow vortex Gaussian beam beyond the paraxial approximation, one can calc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-017-18142-y